Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 6(3): e392, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382117

RESUMO

The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike. Here, we established a ChIP-Seq framework for Chr. zofingiensis yielding over 20 million high-quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA-protein cross-linking. We used this ChIP-Seq framework to generate a genome-wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA-Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP-Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis.

2.
Nat Methods ; 18(12): 1499-1505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34824476

RESUMO

Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules. We observed rewiring, where the TF sensing and regulatory role is maintained while the arrangement and identity of target genes diverges, in some cases encoding entirely new functions. We further integrated phenotypic information to define new functional regulatory modules and pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% increase of known Escherichia coli motifs and the first annotation in Pseudomonas simiae, revealing deep conservation in bacterial promoter architecture. Our method provides a versatile tool for functional characterization of genetic pathways in prokaryotes and eukaryotes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Motivos de Aminoácidos , Arabidopsis/genética , Sítios de Ligação , Biotina/química , Mapeamento Cromossômico , DNA/química , Código de Barras de DNA Taxonômico , Bases de Dados Genéticas , Escherichia coli/metabolismo , Biblioteca Gênica , Redes Reguladoras de Genes , Fenótipo , Ligação Proteica , Pseudomonas/metabolismo , Especificidade da Espécie , Fatores de Transcrição/metabolismo
3.
Hepatology ; 70(4): 1360-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30933372

RESUMO

Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.


Assuntos
Metilação de DNA/genética , Epigenômica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Fígado/patologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade , Células-Tronco/citologia , Células-Tronco/metabolismo , Ativação Transcricional/genética
4.
Front Genet ; 9: 610, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568673

RESUMO

Background: Prenatal alcohol exposure (PAE) can alter the development of neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and neurobehavioral deficits. Although the etiology of this reprogramming remains unknown, emerging evidence suggests DNA methylation as a potential mediator and biomarker for the effects of PAE due to its responsiveness to environmental cues and relative stability over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles of rat hypothalami and leukocytes at four time points during early development to assess the genome-wide impact of PAE on the epigenome and identify potential biomarkers of PAE. Our model of PAE resulted in blood alcohol levels of ~80-150 mg/dl throughout the equivalent of the first two trimesters of human pregnancy. Hypothalami were analyzed on postnatal days (P) 1, 8, 15, 22 and leukocytes at P22 to compare central and peripheral markers. Genome-wide DNA methylation analysis was performed by methylated DNA immunoprecipitation followed by next-generation sequencing. Results: PAE resulted in lasting changes to DNA methylation profiles across all four ages, with 118 differentially methylated regions (DMRs) displaying persistent alterations across the developmental period at a false-discovery rate (FDR) < 0.05. In addition, 299 DMRs showed the same direction of change in the hypothalamus and leukocytes of P22 pups at an FDR < 0.05, with some genes overlapping with the developmental profile findings. The majority of these DMRs were located in intergenic regions, which contained several computationally-predicted transcription factor binding sites. Differentially methylated genes were generally involved in immune function, epigenetic remodeling, metabolism, and hormonal signaling, as determined by gene ontology analyses. Conclusions: Persistent DNA methylation changes in the hypothalamus may be associated with the long-term physiological and neurobehavioral alterations in observed in PAE. Furthermore, correlations between epigenetic alterations in peripheral tissues and those in the brain will provide a foundation for the development of biomarkers of fetal alcohol spectrum disorder (FASD). Finally, findings from studies of PAE provide important insight into the etiology of neurodevelopmental and mental health disorders, as they share numerous phenotypes and comorbidities.

5.
Nat Commun ; 6: 6351, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25690954

RESUMO

While significant effort has been dedicated to the characterization of epigenetic changes associated with prenatal differentiation, relatively little is known about the epigenetic changes that accompany post-natal differentiation where fully functional differentiated cell types with limited lifespans arise. Here we sought to address this gap by generating epigenomic and transcriptional profiles from primary human breast cell types isolated from disease-free human subjects. From these data we define a comprehensive human breast transcriptional network, including a set of myoepithelial- and luminal epithelial-specific intronic retention events. Intersection of epigenetic states with RNA expression from distinct breast epithelium lineages demonstrates that mCpG provides a stable record of exonic and intronic usage, whereas H3K36me3 is dynamic. We find a striking asymmetry in epigenomic reprogramming between luminal and myoepithelial cell types, with the genomes of luminal cells harbouring more than twice the number of hypomethylated enhancer elements compared with myoepithelial cells.


Assuntos
Mama/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Mama/citologia , Ciclo Celular , Diferenciação Celular , Separação Celular , Cromatina/química , Imunoprecipitação da Cromatina , Ilhas de CpG , Epigenômica , Células Epiteliais/citologia , Éxons , Feminino , Citometria de Fluxo , Genoma Humano , Histonas/química , Humanos , Íntrons , Cariotipagem , MicroRNAs/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...